A CLASS OF CONSTRUCTIONS FOR TURÁN'S (3, 4)-PROBLEM

A. V. KOSTOCHKA

Received 5 February 1982

Let f(n) denote the minimal number of edges of a 3-uniform hypergraph G = (V, E) on n vertices such that for every quadruple $Y \subset V$ there exists $Y \supset e \in E$. Turán conjectured that f(3k) = k(k-1)(2k-1). We prove that if Turán's conjecture is correct then there exist at least 2^{k-2} non-isomorphic extremal hypergraphs on 3k vertices.

1. Introduction

A 3-uniform hipergraph G=(V,E) is called a (3, 4)-graph if for any 4-element set $Y\subset V$ there is an edge $e\in E$ such that $e\subset Y$. In other words, if there is no empty 4-set in G.

We call the following problem "Turán's (3, 4)-problem" [2]. Find the minimal number f(n) of edges of a (3, 4)-graph on n vertices.

The following 3-graph is a (3, 4)-graph:

(a)
$$V = V_1 \cup V_2 \cup V_3$$
 is a partition of V . $|V_1| = \left\lfloor \frac{n}{3} \right\rfloor$, $|V_2| = \left\lfloor \frac{n+1}{3} \right\rfloor$, $|V_3| = \left\lfloor \frac{n+2}{3} \right\rfloor$. $\{u, v, w\} \in E$ iff u, v and w are different and one of the following conditions is satisfied:

- (b) $\{u, v, w\} \subset V_j$ for some $1 \le j \le 3$,
- (c) $\{u, v\} \subset V_i$, $w \in V_{i+1}$ for some $1 \le j \le 3$.

Here and in the whole paper j is understood mod 3. From this construction it follows that $f(n) \leq \varphi(n)$ where

$$\varphi(n) = \begin{cases} (2k-1)(k-1) \cdot k, & \text{if } n = 3k; \\ (2k-1) \cdot k^2, & \text{if } n = 3k+1; \\ (2k+1) \cdot k^2, & \text{if } n = 3k+2. \end{cases}$$

Turán conjectured $f(n) = \varphi(n)$. Brown [1] has shown that in case of $n \equiv 0 \pmod{3}$ there are at least n/3-1 non-isomorphic (3, 4)-graphs with n vertices and $\varphi(n)$ edges. In the present paper we construct $2^{n/3-2}$ such graphs. This fact indicates that if Turán's conjecture is correct, it is not easy to prove it.

AMS subject classification (1980): 05 C 35, 05 C 65.

2. The construction

Let $n=3k, m, l_1, l_2, ..., l_m$ be positive integers satisfing $l_m \ge 2$ and $\sum_{i=1}^m l_i = k$. The 3-uniform hypergraph $G_m(l_1, l_2, ..., l_m) = (V, E)$ defined in the following way.

$$V = V_1 \cup V_2 \cup V_3,$$

$$V_j = \bigcup_{i=1}^m V_{ij}$$

are partitions of V and V_i , respectively.

$$|V_{ij}| = l_i$$
 $(1 \le j \le 3, 1 \le i \le m).$

The triple $\{u, v, w\}$ belongs to E iff u, v and w are different and one of the following conditions is satisfied:

$$(i) u \in V_{i_2,j}, \quad v \in V_{i_2,j}, \quad w \in V_{i_2,j},$$

for some $j \in \{1, 2, 3\}$ and $1 \le i_1 \le i_2 \le i_3 \le m$ such that $i_1 = i_2 \pmod{2}$;

(ii)
$$u \in V_{i_1, i}, \quad v \in V_{i_2, j}, \quad w \in V_{j+1},$$

for some $j \in \{1, 2, 3\}$ and $1 \le i_1 \le i_2 \le m$ such that i_1 is odd;

(iii)
$$u \in V_{i_1,j}, \quad v \in V_{i_2,j}, \quad w \in V_{j-1},$$

for some $j \in \{1, 2, 3\}$ and $1 \le i_1 \le i_2 \le m$ such that i_1 is even;

(iv)
$$u \in V_{i_1,j}, v \in V_{i_2,j}, w \in V_{i_3,j-1},$$

for some $j \in \{1, 2, 3\}$ and $1 \le i_3 < i_1 \le i_2 \le m$ such that i_1 is odd, i_3 is even;

$$(v) u \in V_{i_1,i}, \quad v \in V_{i_2,i}, \quad w \in V_{i_2,i+1},$$

for some $j \in \{1, 2, 3\}$ and $1 \le i_3 < i_1 \le i_2 \le m$ such that i_1 is even, i_3 is odd.

It is easy to check that $G_1(k)$ is the construction described in the introduction and $G_2(l_1, l_2)$ is Brown's (3, 4)-graph [1]. If it does not cause any ambiguity $G_m(l_1, l_2, ..., l_m)$ will be denoted by G_m .

3. Properties of $G_{\rm m}$

Proposition 1. For any pair $\{u, v\} \subset V_{m,j}$ $u \neq v$ there are precisely 2k-2 edges e satisfying $\{u, v\} \subset e \in E$.

Proof. Case 1. m is odd. The third vertex of the edge $\{u, v, w\}$ belongs to V_j iff $w \in V_{1,j} \cup V_{3,j} \cup ... \cup V_{m,j} \setminus \{u, v\}$ (condition (i)). This means that $\{u, v\}$ belongs to $l_1 + l_3 + ... + l_m - 2$ edges being entirely in V_j . It follows from condition (ii) that all the k edges satisfying $w \in V_{j+1}$ belong to G_m . According to (iv), the third w can be chosen $l_2 + l_4 + ... + l_{m-1}$ ways from V_{j-1} . There are no edges containing $\{u, v\}$

and satisfying (iii) or (v). Consequently, the number of edges of G_m containing $\{u, v\}$ is

$$(l_1+l_3+\ldots+l_m-2)+k+(l_2+l_4+\ldots+l_{m-1})=2k-2.$$

Case 2. m is even. Analogously to Case 1, there are $l_2+l_4+...+l_m-2$ edges in G_m , containing $\{u,v\}$ is in V_j . We can choose w in k different ways from V_{j-1} and $l_1+l_3+...+l_{m-1}$ ways from V_{j+1} (conditions (iii) and (v) resp.). There are no edges containing $\{u,v\}$ and satisfying (ii) or (iv). The number of considered edges is the same as above.

If G is a 3-graph V(G) and E(G) denote its vertex set and edge set respectively. Let us notice that our notations V_{ij} are somewhat inconsequent in the construction: $V_{ij} = V_{ij}(l_1, l_2, ..., l_m)$ can depend on the parameters $l_1, l_2, ..., l_m$. In what follows we will use induction, properties of $G_m(l_1, l_2, ..., l_m)$ will be proved by using $G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m)$ on the same vertex set. Therefore V_{ij} will be used for $V_{ij}(l_1, l_2, ..., l_m)$ and it will be supposed that $V_{ij}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m) = V_{ij}$ if $1 \le i \le m-2$, $V_{m-1,j}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m) = V_{m-1,j} \cup V_{m,j}$ for every $1 \le j \le 3$.

Proposition 2. $G_m(l_1, l_2, ..., l_m)$ and $G_{m-1}(l_1, l_2, ..., l_{m-2}; l_{m-1}+l_m)$ may differ only in edges being at least 2 vertices from $V_{m,j}$ for some $1 \le j \le 3$. More precisely

$$\begin{aligned} & \left\{ e \in E \left(G_m(l_1, l_2, ..., l_m) \right) \middle| \left| e \cap V_{m,j} \right| \le 1, & \text{for } 1 \le j \le 3 \right\} = \\ &= \left\{ e \in E \left(G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m) \right) \middle| \left| e \cap V_{m,j} \right| \le 1, & \text{for } 1 \le j \le 3 \right\}. \end{aligned}$$

Proof. Suppose that $e \in E\left(G_m(l_1, l_2, ..., l_m)\right)$ and e is of type (i). If $i_2 < m$ then e is obviously in $E\left(G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m)\right)$. If $i_2 = m$ then $i_3 = m$, e has two vertices in $V_{m,j}$. Suppose now that $e \in E\left(G_m(l_1, l_2, ..., l_m)\right)$ of type (ii)—(v). If $i_1 < m$ then e belongs to $E\left(G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m)\right)$ otherwise $i_1 = i_2 = m$. The other direction can be proved analogously.

Proposition 3. $|E(G_m(l_1, l_2, ..., l_m))| = |E(G_1(k))| = \varphi(3k)$ holds for any set m, $l_1, l_2, ..., l_m, k$ of natural numbers satisfying $l_m \ge 2$, $\sum_{i=1}^m l_i = k$.

Proof. We use induction on m. The statement is trivial for m=1. Let us suppose that it is true for any m' < m.

$$\begin{aligned} & \left| \left\{ e \in E \big(G_m(l_1, l_2, ..., l_m) \big) \middle| \left| e \cap V_{m,j} \right| \le 1 \quad \text{for} \quad 1 \le j \le 3 \right\} \right| = \\ & = \left| \left\{ e \in E \big(G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m) \big) \middle| \left| e \cap V_{m,j} \right| \le 1 \quad \text{for} \quad 1 \le j \le 3 \right\} \right| \end{aligned}$$

follows from Proposition 2. However, by Proposition 1, the number of edges containing a pair $\{u, v\} \subset V_{m, j}$ is 2k-2 both in $G_m(l_1, l_2, ..., l_m)$ and in $G_{m-1}(l_1, l_2, ..., l_{m-1}, l_{m-1}, l_m)$. Finally, both graphs contain all the triples being completely in $V_{m, j}$. Consequently, we have

$$|E(G_m(l_1, l_2, ..., l_m))| = |E(G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m))| = |E(G_1(k))|. \quad \blacksquare$$

Proposition 4. $G_m(l_1, l_2, ..., l_m)$ is a (3, 4)-graph.

Proof. We use induction, again. For m=1 the statement is known. Suppose, that it is true for any m' < m and prove it for m.

Let $Y = \{v_1, v_2, v_3, v_4\}$ be a quadruple containing no edge in $G_m(l_1, l_2, ..., l_m)$. If $|V_{m,j} \cap Y| \le 1$ for all $j \in \{1, 2, 3\}$ then Proposition 2 implies that Y contains no edge in $G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1} + l_m)$. This contradicts our inductional hypothesis. Therefore one of $V_{m,j}$ contains at least two elements of Y, say $\{v_1, v_2\} \subset V_{m,1}$. We distinguish two cases according to the parity of m.

Case 1. m is even. It follows from (iii) that $Y \cap V_3 = \emptyset$.

Suppose that $|V_1 \cap Y| \ge 3$, that is, there is an i_1 such that $v_3 \in V_{i_1,1}$. If i_1 is even then $\{v_1, v_2, v_3\} \in E(G_m)$ holds by (i), contradicting our supposition. If i_1 is odd then $v_4 \in V_2$ leads to a contradiction by (ii). That is in this case $v_4 \in V_{i_2,1}$ for some odd i_2 . Now $\{v_3, v_4, v_1\} \in E(G_m)$ gives the contradiction by (i). We may conclude $Y \cap V_1 = \{v_1, v_2\}$.

Therefore $v_3, v_4 \in V_2$, that is, $v_3 \in V_{i_3,2}, v_4 \in V_{i_4,2}$ for some i_3, i_4 . If one of them is odd then (v) gives a contradiction. If $i_3 \equiv i_4 \equiv 0 \pmod{2}$ then $\{v_3, v_4, v_1\} \in E(G_m)$ follows by (iii).

Case 2. m is odd. The proof in this case is analogous to Case 1.

Let us now investigate the complete subgraphs of G_m on k+1 vertices. Suppose that $M \subset V(G_m)$, |M| = k+1; and every three-element subset of M is in $E(G_m)$. As G_m contains no edge with exactly one vertex of each V_j , $M \cap V_j = \emptyset$ must hold for some j. $M \cap V_3 = \emptyset$ may be supposed for definiteness.

|M| > k implies that for some $1 \le i \le m$ hold $M \cap V_{i,1} \ne \emptyset$ and $M \cap V_{i,2} \ne \emptyset$ simultaneously. Say $v \in V_{i,1} \cap M$, $u \in V_{i,2} \cap M$. If $w \in M \setminus \{u, v\}$ then $\{u, v, w\} \in E(G_m)$. We may conclude by (i)—(v) that w must be in the set

$$M_{1} = (V_{1,1} \cup V_{3,1} \cup \ldots \cup V_{i,1}) \cup \left(\bigcup_{s=i+1}^{m} V_{s,1}\right) \cup (V_{2,2} \cup V_{4,2} \cup \ldots \cup V_{i-1,2}) \setminus \{v\}$$

if i is odd and in the set

$$M_2 = (V_{1,1} \cup V_{3,1} \cup \ldots \cup V_{i-1,1}) \cup (V_{2,2} \cup V_{4,2} \cup \ldots \cup V_{i,2}) \cup \left(\bigcup_{s=i+1}^{m} V_{s,2}\right) \setminus \{u\}$$

if i is even. The sets $M_1 \cup \{u, v\}$ and $M_2 \cup \{u, v\}$ have cardinalities k+1. They are the only candidates for M, containing $\{u, v\}$. However, if i < m then $V_{m-1,1} \cup \bigcup V_{m,1} \subset M_1 \cup \{u, v\}$ and $V_{m-1,2} \cup V_{m,2} \subset M_2 \cup \{u, v\}$ but G_m contains no edge $\{x, y, z\}$ of form $\{x, y\} \subset V_{m,j}$, $z \in V_{m-1,j}$. Therefore i must be equal to m. The (k+1)-element sets M inducing a complete subgraph in G_m are

$$M = V_{1,j} \cup V_{2,j+1} \cup V_{3,j} \cup V_{4,j+1} \cup \dots \cup V_{m,j} \cup \{u\} \qquad u \in V_{m,j+1}$$

if m is odd and

$$M = V_{1,j} \cup V_{2,j+1} \cup V_{3,j} \cup V_{4,j+1} \cup \ldots \cup V_{m,j+1} \cup \{v\} \quad v \in V_{m,j}$$

if m is even.

Their number is $3 \cdot l_m$ in both cases. Moreover they can be divided into 3 classes of l_m elements in such a way that the intersection of the l_m complete subgraphs being in one class is a complete subgraph on k vertices. As the isomorphic picture of a complete 3-graph is a complete 3-graph we have proved the following Lemma:

Lemma 5. If $G_m(l_1^1, l_2^1, ..., l_m^1)$ $(l_m^1 \ge 2)$ and $G_r(l_1^2, l_2^2, ..., l_r^2)$ $(l_r^2 \ge 2)$ are isomorphic then $l_m^1 = l_r^2$ and for any isomorphism ψ and index $j \in \{1, 2, 3\}$ there is a $j' \in \{1, 2, 3\}$ such that $\psi\left(V_{m,j}(l_1^1, l_2^1, ..., l_m^1)\right) = V_{r,j'}(l_1^2, l_2^2, ..., l_r^2)$.

The following lemma immediately follows by Proposition 2:

Lemma 6. Let us fix the vertices $v_1 \in V_{m,1}, v_2 \in V_{m,2}, v_3 \in V_{m,3}$ of $G_m(l_1, l_2, ..., l_m)$. Then the 3-graph induced in $G_m(l_1, l_2, ..., l_m)$ by $V \setminus \bigcup_{j=1}^{n} (V_{m,j} \setminus \{v_j\})$ is isomorphic to $G_{m-1}(l_1, l_2, ..., l_{m-2}, l_{m-1}+1)$.

Now we are able to prove

Proposition 7. If $G_m(l_1^1, l_2^1, ..., l_m^1)$ and $G_r(l_1^2, l_2^2, ..., l_r^2)$ are isomorphic $l_m^1 \ge 2$, $l_r^2 \ge 2$ then m = r, $l_1^1 = l_1^2$, $l_2^1 = l_2^2$, ..., $l_m^1 = l_m^2$.

Proof. We use induction on m+r. If m+r=2 then the statement is trivial. Suppose m+r>2 and that the proposition is true for smaller values. Let ψ be an isomorphism between $G_m(l_1^1, l_2^1, ..., l_m^1)$ and $G_r(l_1^2, l_2^2, ..., l_r^2)$. Lemma 5 implies $l_m^1 = l_r^2$ and the existence for every $j \in \{1, 2, 3\}$ of $j' \in \{1, 2, 3\}$ such that

$$\psi(V_{m,j}(l_1^l, l_2^l, ..., l_m^l)) = V_{r,j'}(l_1^2, l_2^2, ..., l_r^2).$$

Let us note that $l_m^1 = l_r^2 < k$ and m > 1, r > 1 follow from m + r > 2. Fix the vertices $v_j \in V_{m,j}(l_1^1, l_2^1, ..., l_m^1)$ $(1 \le j \le 3)$ and consider the graphs G^1 and G^2 induced by $V\left(G_m(l_1^1, l_2^1, ..., l_m^1)\right) \setminus \bigcup_{j=1}^{3} \left(V_{m,j}(l_1^1, l_2^1, ..., l_m^1)\setminus \{v_j\}\right)$ and $V\left(G_r(l_1^2, l_2^2, ..., l_r^1)\right) \setminus \bigcup_{j=1}^{3} \left(V_{r,j'}(l_1^2, l_2^2, ..., l_r^2)\setminus \{\psi(v_j)\}\right)$ in $G_m(l_1^1, l_2^1, ..., l_m^1)$ and $G_r(l_1^2, l_2^2, ..., l_r^2)$ respectively. The restriction of ψ on $V(G^1)$ gives an isomorphism between G^1 and G^2 , by (*).

vely. The restriction of ψ on $V(G^1)$ gives an isomorphism between G^1 and G^2 , by (*). We know from Lemma 6 that G^1 is isomorphic to $G_{m-1}(l_1^1, l_2^1, ..., l_{m-2}^1, l_{m-1}^1 + 1)$ and G^2 is isomorphic to $G_{r-1}(l_1^2, l_2^2, ..., l_{r-2}^2, l_{r-1}^2 + 1)$. It follows by the inductional hypothesis that m-1=r-1, $l_1^1=l_1^2$, $l_2^1=l_2^2$, ..., $l_{m-2}^1=l_{r-2}^2$, $l_{m-1}^1+1=l_{r-1}^2+1$.

Proposition 8. The number of (3, 4)-graphs with 3k $(k \ge 2)$ vertices and $\varphi(3k)$ edges is at least 2^{k-2} .

Proof. According to Proposition 7, the number of non-isomorphic graphs $G_m(l_1, l_2, ..., l_m)$ satisfying $\sum_{i=1}^m l_i = k$ is equal to the number of solutions of the equation

$$l_1 + l_2 + \ldots + l_{m-1} + \tilde{l}_m = k - 1,$$

where $l_m = l_m - 1$, in natural numbers. This is known to be $\binom{k-2}{m-1}$. That is, the total number of non-isomorphic (3, 4)-graphs with 3k vertices and $\varphi(3k)$ edges is at least

$$\sum_{m=1}^{k-1} {k-2 \choose m-1} = 2^{k-2}. \quad \blacksquare$$

Remark. Deleting any vertex of G_m a (3, 4)-graph with 3k-1 vertices and $\varphi(3k-1)$ edges can be obtained. If two such vertices are deleted from G_m which belong to

exactly k-1 edges then the obtained graph has 3k-2 vertices and $\varphi(3k-2)$ edges. It means that our construction gives a lot of non-isomorphic (3, 4)-graphs with n vertices and $\varphi(n)$ edges for $n \neq 0 \pmod{3}$, too.

Acknowledgement. My sincere thanks are due to G.O.H. Katona for his kind help and to M. Simonovits for useful discussions.

References

- [1] W. G. Brown, On an open problem of Paul Turán concerning 3-graphs, Studies in Pure Mathematics (to appear).
- [2] P. Turán, Research problems, Magyar Tud. Akad. Mat. Kut. Int. Közl. 6 (1961), 417-423.

A. V. Kostochka

Institute of Mathematics of the Siberian Branch of the Academy of Sciences of the USSR Novosibirsk-90, 630090, USSR